Wave Optics and Optical Metrology

- **Introduction**

 Historical Introduction
 Waves: harmonic waves, complex representation, phase velocity, wavefront types.

- **Basic Principles:**

 Maxwell equations, wave equation, Poynting vector, intensity
 Index of refraction, dispersion – absorption. Classical dispersion theory.

 - **Polarization:**

 Polarization state, degree of polarization, non polarized light.
 Linear, elliptical, circular polarization
 Jones vectors and matrices, Stokes parameters and Mueller matrices
 Linear polarizers, retardation plates.

 - **Interference:**

 Group velocity, coherence, interference conditions, types and localization of interference fringes
 Two wave interference, multiple plane wave interference
 Wavefront splitting interferometers: Young’s experiment
 Amplitude splitting interferometers: Equal inclination fringes (thin film interference), Equal thickness fringes, interference under multiple reflections.

- **Wave propagation:**

 - **Diffraction:**

 Fresnel zones, Helmholtz-Kirchhoff integral theorem, Kirchhoff diffraction theory.
 Fraunhofer and Fresnel diffraction: slit, rectangular, circular opening.
 Resolution, diffraction limited systems.
 Array of diffracting openings: multiple slits

 - **Paraxial approximation:**

 The paraxial wave equation, numerical examples
 Equivalence to the Schrödinger equation

 - **Eikonal equation :**

 Optical rays,
 Derivation of the eiconal equation, geometrical wave surfaces, ray equation, paraxial approximation
 Propagation in inhomogeneous media.

 - **Computational methods of wave propagation:**

 - Angular Spectrum
Angular spectrum, paraxial approximation, application in the analytical solution of 1D Gaussian beam propagation.

- **Numerical solutions**
 Introduction to the open source platform Maxima.
 Virtual wave propagation and analysis laboratory *wP* (wave Propagator) & *wP* Analysis
 Numerical examples

- **Optical metrology:**
 - **Methods**
 - Interferometry
 - Holography
 - Spectroscopy
 - Spectral Interferometry
 - **Applications**
 - Material characterization
 - Surface topology
 - Thickness
 - Optical radar
 - Distribution of refractive index
 - Concentration measurements

- **Wavefront shaping**
 Basic principles.
 Amplitude and phase Spatial Light Modulators (SLMs)
 Generation of complex wave packets
 Numerical examples